The Proof of Lin's Conjecture via the Decimation-Hadamard Transform
نویسندگان
چکیده
In 1998, Lin presented a conjecture on a class of ternary sequences with ideal 2-level autocorrelation in his Ph.D thesis. Those sequences have a very simple structure, i.e., their trace representation has two trace monomial terms. In this paper, we present a proof for the conjecture. The mathematical tools employed are the second-order multiplexing decimation-Hadamard transform, Stickelberger’s theorem, the Teichmüller character, and combinatorial techniques for enumerating the Hamming weights of ternary numbers. As a by-product, we also prove that the Lin conjectured ternary sequences are Hadamard equivalent to ternary m-sequences.
منابع مشابه
Multiplexing Realizations of the Decimation-Hadamard Transform of Two-Level Autocorrelation Sequences
A new method to study and search for two-level autocorrelation sequences for both binary and nonbinary cases is developed. This method iteratively applies two operations: decimation and the Hadamard transform based on general orthogonal functions, referred to as the decimation-Hadamard transform (DHT). The second iterative DHT can transform one class of such sequences into another inequivalent ...
متن کاملA Brief Determination of Certain Class of Power Semicircle Distribution
In this paper, we give a new and direct proof for the recently proved conjecture raised in Soltani and Roozegar (2012). The conjecture can be proved in a few lines via the integral representation of the Gauss-hypergeometric function unlike the long proof in Roozegar and Soltani (2013).
متن کاملRealizations from Decimation Hadamard Transform for Special Classes of Binary Sequences with Two-Level Autocorrelation
In an effort to search for a new binary two-level autocorrelation sequence, the decimation-Hadamard transform (DHT) based on special classes of known binary sequences with two-level autocorrelation is investigated. It is theoretically proved that some realizations of a binary generalized Gordon-Mills-Welch (GMW) sequence can be predicted from the structure of subfield factorization and the real...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 60 شماره
صفحات -
تاریخ انتشار 2014